
1 2 3

4 5 6

Web Principles, Page 165

165

Flexbox

A little history
15 years ago we built our web interface structures with
tables. Tables were reliable because content inside a table
cell would never expand beyond the wall of the cell. You
could tell the table, and / or the table data cell children
how wide to be using pixels or percents, and it rarely
backfired. You could nest tables inside tables to get even
more granular control. In this example, (which you can
still easily do in Dreamweavers Design view) I first built
a one column, two row table. Inside each row I inserted a
one row 3 column nested table. Using this structure, you
can easily drop logo and banner images into cells 1 and 3,
along with an expander pattern image from Photoshop in
cell 2. Then you can stack buttons in cell 4, content in cell
5, some action boxes in cell 6 and you have state of the
art web design from last century.

Then search engines got smarter and it was found
that content inside tables was not easily searchable.
Establishing relationships between images and text in
adjacent table rows or columns required a lot of extra
programming in the <table>, <tr> and <td> tags.

Something better was required and it was discovered that
unordered lists were friendier to search engines because
of the implied relationships between content inside the
 tags.

By using a complex matrix of and <div> tags,
combined with floats and positioning (position: absolute,
relative) the web gradually moved towards an interface
design environment that as almost as effective as tables
used to be.
We just finished out our interface using that very
structure.

Behind the scenes the web community and browser
developers were always searching for something easier
and more reliable. Everyone wanted a structure that
allowed for simple alignment capabilities in both the
x and y direction. And despite the fluid nature of the
viewport (browser width), we needed a way to accurately
control column and row width and height. It never

seemed like too much to ask. We had that control
with tables last century. Surely Al Gore, who
invented it all, could improve on it.

In this book so far we've built an interface structure
that relies on floats and positioning. It is very
reliable once all the bugs are worked out, and it
performs well in all browsers going back several
years as of 2015.

Enter flexbox
Think of flexbox as a flexible 3 car garage. By
giving the garage a property of display: flex; all
3 of the bays in the garage are exactly the same
size: height and width. If anything gets bigger,
everything maintains the same relationship.
For example, if the viewport (browser) gets bigger,
the garage gets bigger, and the bays inside the
garage maintain their relationship.

If we put a bigger car in one of the garage bays,
that bay will get taller to accomodate the content,
and it's sibling bays will get taller too, to maintain
the equal relationship between the 3 garage bays.

If you remember the dark days of tables, you are
probably thinking that this was just how tables
behaved, and you are right. But even better, with
fllexbox, we can wrap the garage bays...that was
never possible with table data cells. We can also
easily control alignment both inside and outside the
bays in both x and y directions, including justify.
Plus we can even re-order the bays, all without
touching the html markup.

Web Principles, Page 166

166

Flexbox for the menu

STEP ONE: Edit these two style sheet rule as shown in bold brown
NOTE: We told the parent tag to have a display: flex;
property. This means that its children (the list items) are now
displaying in the default row behavior. They are also using the
default left alignment. But, because we are using flexbox, we now
have a lot of tools at our disposal to make these buttons much
prettier using alignment properties that have been common in
word processing programs for decades.

NOTE: for a full explanation of the Flexible Box Layout model,
go to this address and search for space-around:
http://www.w3.org/TR/css3-flexbox/#flex-property

Screenshot below is from the w3.org

STEP TWO: add justify-content: space-around; to the #nav ul

On our menu, justify-content has caused the tags to spread
out evenly across the parent element. The space-around
property does some fancy math to adjust margins between list items.
But there is still a problem: they get their width based on the text in
the anchor tags. We can fix that by speaking directly to the child
tags.

#nav ul {
 list-style: none;
 margin: 0;
 padding: 0;
 background: #ebca87;
 border: 1px solid #ccc;
 border-width: 0 1px;
 display: flex;
}
#nav ul li {
 /*display: inline-block;*/
 /*margin: 0px -2px 0px -2px;*/
 /*padding: 0;*/
 /*width: 8em;*/
 /*line-height: 1em;*/
}

#nav ul {
 list-style: none;
 margin: 0;
 padding: 0;
 background: #ebca87;
 border: 1px solid #ccc;
 border-width: 0 1px;
 display: flex;
 justify-content: space-around;
}

style.css

style.css

Web Principles, Page 167

167

Flex grow, shrink, basis-width

Similar to how you can tell a <div> or <td> to have a
width property in pixels, em's or percents, we can also speak
to the child flex elements.

STEP ONE: edit the #nav ul li rule as shown

This tells the tags (children of the flexbox
parent) to neither grow nor shrink. And to have a fixed
width of 8em, which currently matches the drop menu.

But notice what happens when the viewport gets narrower than 40ems
(5 @ 8em each). The blows through the sides of the parent
wrapper. You should play around with different combinations of numbers
for grow, shrink and basis-width to see how it behaves.

STEP TWO: Modify #nav ul li as shown.
NOTE: the position relative is required for the drop menu
both for proper width, and because we absolutely position
the child dropmenu.

This is perhaps our best look so far, as the tags, are
growing to fill the available space. The dropmenu width
doesn't match, but we can fix that later. To get that margin
back on the left and right sides of the buttons, we can
modify margin and padding on the parent

STEP THREE: delete the border property on #nav ul

STEP FOUR: then modify the #nav property as shown to distribute 5% of
padding on either side of the tag.

This gives us a reasonably pretty menu that survives larger viewport widths.
(Still need to fix that dropmenu width)

#nav ul li {
 flex: 0 0 8em;
 /*grow=0, shrink=0, basis-width=8em*/
}

#nav ul li {
 flex: 1 0 auto;
 /*grow=0, shrink=0, basis-width=8em*/
 position: relative; /*for drop menu*/
}

#nav {
 margin: 0px;
 padding: 0 5%;
 text-align: center;
 background: #ebca87;
 border-top: 1px solid hsl(322, 24%, 29%);
}

style.css

style.css

Web Principles, Page 168

168

Menus

To get more precise control over our rollovers we
need to move the background colors and hover
effects out of the <a> tags and onto the
tags.

STEP ONE: cut the background property out of
#nav ul li a

STEP TWO: paste it into the #nav ul li rule

You may have noticed that I've changed a lot of
my hex colors to hsl() colors. I'm using a new
free code editor called Brackets. If you click in
a hexadecimal color code and press CTRL + e,
Brackets will launch a color picker where you can
switch your color from hex to HSLa by simply
clicking the HSLa button. This color mode, and this code editor
makes a lot of things easier, including animations.

STEP THREE: Add this new rule to fix the color of the gallery
anchor text when the drop menu is hanging

STEP FOUR: Cut the background-color property out of a:hover so
it is just a text color change.

STEP FIVE: Add a new li:hover rule and paste in the background-
color you cut from the a:hover rule. This should bring back your
normal rollover look, but now it's happening on the tag.

#nav ul li {/**
 flex: 1 0 auto;
 background-color: hsl(40, 71%, 73%);
 position: relative;/*for drop menu*/
}

#nav ul li a {
 display: block;
 text-decoration: none;
 padding: 0.5em;
 margin: 0px;
 /*background-color: hsl(40, 71%, 73%);*/
 font-size: 1em;
 color: hsl(322, 24%, 29%);
}

#nav li.dropmenu:hover {
 background: hsl(322, 24%, 29%);
}
#nav li.dropmenu:hover a {
 color: hsl(0, 0%, 100%);
}

#nav ul li:hover {
 background-color: hsl(322, 24%, 29%);
}
#nav ul li a:hover {
 color: hsl(0, 0%, 100%);
}

style.css

style.css

style.css

Web Principles, Page 169

169

Button eyecandy
Next I would like to add pinline borders to the sides of the buttons on rollover.
Because borders on rollover make the buttons (list items) wider, we need to also
add the borders to the list items in their normal "off" state. We can do this by
adding invisible (alpha: 0;) borders, and then simply turn them
on at mouseover. They will be like Christmas lights on a tree
in August...waiting for electricity.

STEP ONE: add invisible borders to the sides of #nav ul li
Because I'm using a white border on tan, I made it 2 pixels,
but with a darker color scheme such as blue and grays, 1 pixel
is plenty.

STEP TWO: Modify #nav ul li:hover as shown. This will
switch the border color from invisible to visible on rollover
(hover). The lights on the tree should light up now.

urhere overhaul
Before we fix the appearance of our urhere buttons, let's re-think it. Currently, we
have anchor tags with a class of urhere:
 home

That gets affected by our style sheet of
a.urhere{ /*declarations here*/}

There is a better way to do the urhere function, but it
will require some changes to the html markup. Here
they are:

STEP THREE: Open up your index.html file and
modify the body tag like this:
<body id="home">

STEP FOUR: Also on index.html, modify the home
button by deleting the urhere class, and rewriting the
entire list item as shown:
 <li class="home">home

#nav ul li:hover {
 background-color: hsl(322, 24%, 29%);
 border-color: hsl(0, 0%, 100%);
}

style.css

#nav ul li {
 flex: 1 0 auto;
 background-color: hsl(40, 71%, 73%);
 position: relative;
 border: 2px solid hsla(0, 0%, 100%, 0);
 border-width: 0 2px;
}

style.css

Web Principles, Page 170

170

#home li.home,
#gallery li.gallery,
#animation li.animation,
#resume li.resume,
#contact li.contact {
 background-color: hsl(322, 24%, 29%);
 border: 2px solid hsl(0, 0%, 100%);
 border-width: 0 2px;
}

#home li.home a,
#gallery li.gallery a,
#animation li.animation a,
#resume li.resume a,
#contact li.contact a {
 color: hsl(0, 0%, 100%)
}

style.css

urhere overhaul

STEP ONE: Repeat that process
on *all* your html pages. Pictured
are the changes on the
gallery.html page. Note there
was already a class of dropmenu
on the tag. It is ok to have
dual classes on an element, as
long as they don't conflict with
each other.
NOTE: if you like, you can add
the <li class="[page-name]"> to
all the tags in the nav on all
the pages. The urhere function only
gets triggered if there is a matching <body id="[page-name]"> tag.
This means you can do things like import your nav div with a php
include, while maintaining the urhere function.

STEP TWO: In your style sheet, delete the a.urhere rule and
replace it with these two rules. This new code will bring back your
urhere function but it will be based on whether there is a matching
id and class on the relevant tags before it lights up the button.

If you've never seen a style sheet rule like this before...think of it as
chaining selectors to one set of declarations. I'm saying: "if there is
an id of home, with a child class home; or id gallery & child class
gallery, etc.... the following rules shall apply.

STEP THREE: Pictured is this look on our school project, as well
as my personal website remodel scheme. I'm using 1 pixel button
borders because a darker color scheme allows it.

Web Principles, Page 171

171

Animated button transitions

STEP ONE: add an animation transition to #nav ul li

STEP TWO: if you are using the free Brackets code editor
(http://www.brackets.io) click in the word ease, and press CTRL + e. This will
launch the animation editor. Yank on the bezier curve handles to modify the easing
of the animation. To make it longer change the 1s to 1.5s. Shorter would be
0.5s. It's measured in one thousands of a second.

STEP THREE: add these 3 new style sheet rules. They will bring
some control over the colors and borders on our dropmenu. Note
that I am using a lot of specificity in the style sheet selectors to get
control over the colors.

It's time to fix the width on that drop menu. Because the flex
property allows the parent list items to grow, the child list items
need a way to grow with their parent.

STEP FOUR: edit this style sheet rule by changing the
display: block; to display: flex;
Not quite what we had in mind!

#nav ul li.dropmenu:hover li {
 border: 1px solid hsl(322, 18%, 44%);
 border-width: 1 0 0 0;
}
#nav ul li.dropmenu:hover li a {
 color: hsl(322, 24%, 29%);
}
#nav ul li.dropmenu:hover li a:hover {
 color: hsl(0, 0%, 100%);
}

#nav ul li.dropmenu:hover ul.leveltwo {
 display: flex;
}

style.css

style.css

#nav ul li {
 flex: 1 0 auto;
 background-color: hsl(40, 71%, 73%);
 position: relative;
 border: 2px solid hsla(0, 0%, 100%, 0);
 border-width: 0 2px;
 transition: background 1s ease;
}

style.css

Web Principles, Page 172

172

Drop menu width
Our problem is that the display: flex; property on the parent tag is
displaying as a row. We need to enable the “wrap” property for that flex element. This
allows the
<li class=”dropmenu”> flex item to wrap. It’s weird because it’s positioned
absolutely…but in it’s own way it is wrapping, and it gives us a matching width on
the drop to the parent menu.

STEP ONE: Edit the #nav ul style sheet rule

Note how the dropmenu is wrapping. It matches the width of the main buttons, but
the wrap property cascades down to the child list items. We can fix that by speaking
to the ul ul child flex items.

STEP TWO: add this style sheet rule. By setting the
basis-width to 8em, we prevent it from gettting small enough
to wrap. It will still grow and shrink with the viewport, but
8em seems to be happy value.

#nav ul {
 list-style: none;
 margin: 0;
 padding: 0;
 background: hsl(40, 71%, 73%);
 display: flex;
 flex-wrap: wrap;
 justify-content: space-around;
}

#nav ul li.dropmenu:hover ul.leveltwo {
 display: flex;
}
#nav ul li.dropmenu:hover ul.leveltwo li {
 flex: 1 1 8em;
}

style.css

style.css

Web Principles, Page 173

173

Mobile menu
The smartphone menu needs some tweaking.
It works ok for an iPad, but it's too large to fit
on the screen of an old iPhone, and not aligned
correctly.

STEP ONE: Down in media queries, edit your
style sheet rules as shown. Go through them
carefully one rule at a time. I've tweaked various
things until it seems happy on all devices and
viewports.

Note that the flyout menu arrow is on the wrong side of the word (gallery) and
it's pointing down, not left. We can fix that but it will require altering the html
markup. We will have to put both arrows (down and left) in there at the same
time, and tell them to show or hide depending on viewport width.

/*media queries area*/

#nav{
 margin: 0;
 position:relative;
 border:none;
 /*this hides nav on phone at first arrival,
afterward jquery controls it*/
 display: none;

}
#nav ul {
 width: 8.5em;
 position:absolute;
 right:0;
 top: 0;
 border-bottom: 1px solid hsl(322, 24%, 9%);
}
#nav ul li { /*removed some declarations here*/
 border-top: 1px solid hsl(322, 24%, 29%);
 flex: 0 0 8.5em;
 border-left-style: none;
 border-right-style: none;
}
#nav ul li:hover{
 border-left-style: none;
 border-right-style: none;
 }
#nav ul li a {
 font-size: 0.85em;
 padding: 0.7em;
}
#nav ul ul { /*removed some declarations here*/
 position:absolute;
 right: 8.4em;
 top: 0;
 border-style:
none;

style.css

Web Principles, Page 174

174

/*media queries area*/

 .dropmenu a .small {
 display: inline-block;
 }
 .dropmenu a .big {
 display: none;
 }

.dropmenu a .small {
 display: none;
}

style.css

style.css

Flyout arrows

STEP ONE: Locate your <li class="dropmenu">
and edit it as shown in bold brown. This will give
you arrows on both sides of the word gallery.

STEP TWO: cut and paste that new code into all
of your html pages.

STEP THREE: up in the top nav area of your style
sheet, add this new rule. It will hide the arrow
meant for small screens.

STEP FOUR: Down in media queries, add these two new rules. They will show
the left arrow, and hide the down arrow.

STEP FIVE: Clean up your custom javascript. Remove any extra stuff to make it
match this exactly.

<li class="dropmenu">

 ◀
 gallery
 ▼

 <!--begin drop menu-->
 <ul class="leveltwo">
 Photography
 video
 illustrator
 inDesign

 <!--end drop menu-->

<script>
 $(document).ready(function(){
 $('#navPhone').click(function(e){
 $('#nav').slideToggle(300);
 // cancel the default action - fixes page jump
 e.preventDefault();
 });//end navPhone.click function
 $(window).resize(function(){
 if($(window).width() > 712){// must be a computer
 $('#nav').show();
 } else {// window is < 712 = smartphone
 $('#nav').hide();
 }//end if window.width
 });//end window.resize
 });//end document.ready

</script>

index.html

index.html

Web Principles, Page 175

175

Move custom jquery to an external script

STEP ONE: Make sure you have your website backed up
before we do the next step. Get out your flash drive and
copy/backup the entire website

STEP TWO: Examine the code at the top of your website.
Note the lines of code numbered 11, 13 & 34 in the
screen shot pictured here. These lines import code.
Lines 11 & 13 import javascript libraries. These are
also commonly known as "js" files because of the file
extension *.js, which stands for javascript.

Next note the code inside the starting and stopping
<script></script> tags. Although this is code
written in the jquery language, it can be imported from
an external js file. For example: rather than having 19
lines of custom jquery script, we can import it from an
external js file with one line of script:
<script src="js/myjquery.js"></script>

STEP THREE: Highlight and cut all the jquery script between (but not including) the
starting and stopping <script></script> tags. If your code looks like
the screenshot above, cut the code from line 16 to 31. Then delete the
starting and
stopping <script></script> tags

STEP FOUR: In Dreamweaver (or any code editor), choose
file>new>Blank Page>JavaScript

STEP FIVE: Choose edit>paste to bring in your cut jquery code.

STEP SIX: Choose file>save as. Navigate down into your "js" folder.
Name the file myjquery.js

